Optimum particle size and air flow rate in bubble separation of isoelectric casein coagula.
نویسندگان
چکیده
منابع مشابه
Interactional effects of bubble size, particle size, and collector dosage on bubble loading in column flotation
The success of flotation operation depends upon the thriving interactions of chemical and physical variables. In this work, the effects of particle size, bubble size, and collector dosage on the bubble loading in a continuous flotation column were investigated. In other words, this work was mainly concerned with the evaluation of the true flotation response to the changes in the operating varia...
متن کاملComputer Simulation of Particle Size Classification in Air Separators
Cement powder size classification efficiency significantly affects quality of final product and extent of energy consumption in clinker grinding circuits. Static and dynamic or high efficiency air separators are being used widely in closed circuit with multi-compartment tube ball mills, High Pressure Grinding Rolls (HPGR) and more recently Vertical Roller Mills (VRM) units in cement plants ...
متن کاملPARTICLE SIZE SEPARATION: Electric Fields in Field Flow Fractionation
Bhave RR (ed.) (1991) Inorganic Membranes. Synthesis, Characteristics and Applications. New York: Van Nostrand Reinhold. Cheryan M (1998) UltraTltration and MicroTltration Handbook. Lancaster, PA: Technomic. Cheryan M and Alvarez J (1995) Membranes in food processing. In: Noble RD and Stern SA (eds) Membrane Separations. Technology, Principles and Applications, p. 415. Amsterdam: Elsevier. Cher...
متن کاملEfficiency of size-dependent particle separation by pinched flow fractionation
Pinched flow fractionation is shown to be an efficient and selective way to quickly separate particles by size in a very polydisperse semi-concentrated suspension. In an effort to optimize the method, we discuss the quantitative influence of the pinching intensity in the balance between the requirements of selectivity and minimal dilution.
متن کاملStudy of Parameters Affecting Separation Bubble Size in High Speed Flows using k-ω Turbulence Model
Shock waves generated at different parts of vehicle interact with the boundary layer over the surface at high Mach flows. The adverse pressure gradient across strong shock wave causes the flow to separate and peak loads are generated at separation and reattachment points. The size of separation bubble in the shock boundary layer interaction flows depends on various parameters. Reynolds-averaged...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Agricultural and Biological Chemistry
سال: 1980
ISSN: 0002-1369,1881-1280
DOI: 10.1271/bbb1961.44.1811